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Abstract: With increasing global investment in elite sports, accurate forecasting of Olympic medal 
outcomes has become a critical area of research. This study develops a comprehensive hybrid 
prediction framework for estimating medal counts at the 2028 Los Angeles Olympics. Leveraging a 
combination of statistical techniques and machine learning models, the framework addresses four key 
tasks: overall medal count prediction, identification of the first medal-winning country, assessment 
of event-specific contributions to medal totals, and evaluation of elite coaching impacts. For medal 
count forecasting, we construct a stacked ensemble model integrating Elastic Net Regression (ENR), 
XGBoost, LightGBM, and CatBoost, with clustering and multi-criteria decision analysis enhancing 
feature representation. The ensemble achieves a mean squared error of 1 and an R² of 0.963, 
projecting the U.S. to lead with 45 gold and 132 total medals. A two-stage random forest model is 
employed to predict the first medal-winning country, suggesting Luxembourg as a top contender. 
Gray relational analysis reveals strong positive correlations between the number of events, 
participating nations, and medal counts, while synthetic control methods confirm the significant 
impact of top-tier coaching on national performance. This integrated approach not only improves 
predictive accuracy but also offers actionable insights for national Olympic committees in optimizing 
resource allocation and strategic planning. The study underscores the importance of combining data-
driven modeling with domain-specific knowledge for complex, high-stakes forecasting tasks. 

1. Introduction 
The Olympic Games have long symbolized international athletic excellence and national strength. 

In recent years, the growing global investment in elite sports programs has intensified competition 
not only in athletic performance but also in medal standings, which have become critical indicators 
of a country's comprehensive sports development [1]. Public attention and policymaking are 
increasingly influenced by projected medal outcomes, prompting the need for accurate and 
interpretable forecasting models [2]. 

Traditional Olympic medal prediction methods often rely on static variables such as historical 
medal counts or GDP per capita. However, these approaches frequently neglect dynamic and 
nonlinear factors like athlete mobility, event composition, host country advantages, and coaching 
influence. Moreover, predictions are typically released close to the Games when rosters are finalized, 
leaving limited room for strategic planning [3]. 

To address these limitations, this study proposes a comprehensive hybrid framework to predict 
Olympic medal outcomes for the upcoming 2028 Los Angeles Games. The framework integrates 
advanced machine learning techniques, data-driven clustering, multi-criteria evaluation, and 
scenario-based decision models to analyze and forecast medal distribution. Beyond overall medal 
counts, the model predicts the first medal-winning country, quantifies the relationship between events 
and medal outcomes, and assesses the influence of elite coaching on national performance. 

This paper presents the following key contributions: 
 Proposed a Hybrid Multi-Model Framework: We developed a comprehensive forecasting model 
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that combines ENR, XGBoost, LightGBM, and CatBoost via stacking fusion to improve the accuracy 
of Olympic medal predictions. 
 Introduced Feature Engineering and Athlete Evaluation Techniques: We applied K-means++ 

clustering for country classification and a Topsis+EWM multi-criteria decision method to evaluate 
athlete-level features, refining critical inputs for prediction. 
 Designed a Two-Stage Random Forest for Early Medal Predictions: To forecast the first medal-

winning countries, we constructed a classifier-regressor pipeline that filters high-potential nations 
and estimates their likelihood of early medal success. 
 Integrated Event-Medal Correlation Modeling: Using gray correlation analysis (GRA), we 

identified which sports contribute most to medal gains across nations and how host countries can 
leverage event selection strategically. 

2. Methodology 
2.1. Medal count prediction model 

Considering that the number of medals won by each country in each Olympic Games is not purely 
a linear or nonlinear change, in order to make the prediction result of the final model more reasonable 
and accurate, we adopt the hybrid model obtained by stacking and mixing the elasticity network 
regression, XGBoost, CatBoost and LightGBM models for the prediction of the number of medals 
[4]. The following will begin with a brief description of these models: Elastic Net Regression (ENR) 
is a linear regression model that combines Lasso regression and Ridge Regression to overcome the 
limitations of single regularization methods by using both L1 and L2 regularization terms. The core 
of the elastic regression network is its loss function, which combines the L1 and L2 regularization 
terms in the following form: 

minimize{ 1
2𝑛𝑛
∥ 𝑦𝑦 − 𝑋𝑋𝑋𝑋 ∥22+ 𝛼𝛼 ⋅ 𝜌𝜌 ∥ 𝑤𝑤 ∥1+ 𝛼𝛼⋅(1−𝜌𝜌)

2
∥ 𝑤𝑤 ∥22}                           (1) 

Where Y is the target variable; X is the feature matrix; w is the model coefficients; 𝛼𝛼 is the 
regularization strength, which controls the overall weight of the regularization term; and 𝜌𝜌 is a mixing 
parameter with a value in the range of [0,1], which is used to control the relative weights of the L1 
and L2 regularizations. When 𝜌𝜌 = 0, the model degenerates to ridge regression. When 𝜌𝜌 = 1, the 
model degenerates to Lasso regression. The core idea of XGBoost is to optimize the model step by 
step through an iterative process, where a new weak learner (usually a decision tree) is added at each 
iteration to correct the prediction error of the previous round of the model. Its main steps include: 

1) Objective function 

ℒ = ∑  𝑛𝑛
𝑖𝑖=1 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) + ∑  𝑇𝑇

𝑘𝑘=1 Ω(𝑓𝑓𝑘𝑘)                                                 (2) 

Where 𝐿𝐿 is the loss function, Ω(fk) = 𝛾𝛾T + 1
2
𝜆𝜆 ∑  T

j=1 wj
2 is the regularization term, T is the number 

of leaf nodes of the tree, 𝑤𝑤𝑗𝑗  is the weight of the leaf nodes, and 𝛾𝛾  and 𝜆𝜆  are the regularization 
parameters. 

2) Second-order Taylor expansion 
In the 𝑡𝑡th iteration, the objective function can be approximated as: 

ℒ (𝑡𝑡) ≈ ∑  𝑛𝑛
𝑖𝑖=1 �𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖

(𝑡𝑡−1)) + 𝑔𝑔𝑖𝑖ℎ𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2
ℎ𝑡𝑡(𝑥𝑥𝑖𝑖)2ℎ𝑖𝑖� + Ω(ℎ𝑡𝑡)                     (3) 

Where gi = ∂L(yi,y�i
(t−1))

∂y�i
(t−1)  and hi = ∂2L(yi,y�i

(t−1))

∂(y�i
(t−1))2

 are the first and second order derivatives of the loss 

function, respectively. 
3) Leaf node weights 
For each leaf node, the optimal weight 𝑤𝑤𝑗𝑗∗ can be obtained by derivation: 

𝑤𝑤𝑗𝑗∗ = −
∑  𝑖𝑖∈𝐼𝐼𝑗𝑗 𝑔𝑔𝑖𝑖

∑  𝑖𝑖∈𝐼𝐼𝑗𝑗 ℎ𝑖𝑖+𝜆𝜆
                                                                (4) 
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Where 𝐼𝐼𝑗𝑗 is the set of samples falling in the jth leaf node. 
4) Optimized objective function 
After substituting the optimal weights, the objective function can be simplified as: 

ℒ (𝑡𝑡) = −1
2
∑  𝑇𝑇
𝑗𝑗=1

(∑  𝑖𝑖∈𝐼𝐼𝑗𝑗 𝑔𝑔𝑖𝑖)
2

∑  𝑖𝑖∈𝐼𝐼𝑗𝑗 ℎ𝑖𝑖+𝜆𝜆
+ 𝛾𝛾𝛾𝛾                                                (5) 

By maximizing this objective function, the optimal tree structure can be found. The following table 
shows the pseudo code list of the XGBoost algorithm. 

CatBoost (Categorical Boosting) is a machine learning algorithm based on Gradient Boosting 
Decision Tree (GBDT) developed by Yandex, which is good at dealing with datasets containing 
categorical features.The core idea of CatBoost is to construct a model through the Gradient Boosting 
framework, adding a new decision tree each iteration to gradually optimize the objective function. 

1) Loss Functions and Regularization 
CatBoost’s loss function contains two parts: the training error and the regularization term: 

ℒ(𝐹𝐹) = ∑  𝑛𝑛
𝑖𝑖=1 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝐹𝐹(𝑥𝑥𝑖𝑖)) + ∑  𝐾𝐾

𝑘𝑘=1 Ω(𝑓𝑓𝑘𝑘)                                            (6) 

2) Target statistical code 

avgtarget = countInClass+prior
totalCount+1

                                                         (7) 

Note that 𝑀𝑀𝑖𝑖 is trained without using the example 𝑋𝑋𝑖𝑖. CatBoost implementation uses the following 
relaxation of this idea: all 𝑀𝑀𝑖𝑖  share the same tree structures. The core idea of LightGBM is to 
construct the model by means of gradient boosted decision trees (GBDT), adding a new decision tree 
at each iteration to gradually optimize the objective function. 

1) Objective fuction 
The objective function of LightGBM also consists of a loss function and a regularization term: 

ℒ = ∑  𝑛𝑛
𝑖𝑖=1 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) + ∑  𝑇𝑇

𝑘𝑘=1 Ω(𝑓𝑓𝑘𝑘)                                                 (8) 

2) Histogram Algorithms 
In the histogram algorithm, the feature values are divided into k buckets and the gradient and 

Hessian values are calculated separately for each bucket: 
𝐺𝐺𝑘𝑘 = ∑  𝑖𝑖∈bin𝑘𝑘 𝑔𝑔𝑖𝑖 ,𝐻𝐻𝑘𝑘 = ∑  𝑖𝑖∈bin𝑘𝑘 ℎ𝑖𝑖                                                (9) 

Where 𝑔𝑔𝑖𝑖 and ℎ𝑖𝑖 are the first and second order derivatives of the loss function, respectively. 
3) Split Gain Calculation 
For each split point of each feature, the split gain can be calculated by the following equation: 

Gain = 1
2
� 𝐺𝐺𝐿𝐿

2

𝐻𝐻𝐿𝐿+𝜆𝜆
+ 𝐺𝐺𝑅𝑅

2

𝐻𝐻𝑅𝑅+𝜆𝜆
− (𝐺𝐺𝐿𝐿+𝐺𝐺𝑅𝑅)2

𝐻𝐻𝐿𝐿+𝐻𝐻𝑅𝑅+𝜆𝜆
� − 𝛾𝛾                                        (10) 

Where 𝐺𝐺𝐿𝐿 and 𝐺𝐺𝑅𝑅 are the gradient sums of the split left and right subtrees, respectively, 𝐻𝐻𝐿𝐿 and 𝐻𝐻𝑅𝑅 
are the Hessian sums of the split left and right subtrees, respectively, and is the regularization 
parameter. 

4) Leaf Node Weights 
For each leaf node, the optimal weight 𝑤𝑤𝑗𝑗∗ can be obtained by derivation: 

𝑤𝑤𝑗𝑗∗ = −
∑  𝑖𝑖∈𝐼𝐼𝑗𝑗 𝑔𝑔𝑖𝑖

∑  𝑖𝑖∈𝐼𝐼𝑗𝑗 ℎ𝑖𝑖+𝜆𝜆
                                                                (11) 

Where 𝐼𝐼𝑗𝑗 is the set of samples falling in the 𝑗𝑗th leaf node.  
After predicting the medal table with each model above, we will select the most accurate one as 

the meta-model of the hybrid model, and then stack the other models on top of it to get a more accurate 
hybrid model for prediction. The simple structure of our hybrid stacking model is shown as Figure 1. 
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Figure 1 Schematic diagram of the stacking modeling process. 

Firstly, we need to define the prediction target of the model and the individual characteristics for 
the model to predict. The number of gold medals, silver medals, bronze medals and the total number 
of medals of each country are our prediction targets. As for the reference features, after analysing, 
selecting and pre-processing the data, we decided to use the following features as our reference 
features: the national sports intensity level, the total number of gold medals of the country in the past 
three years, the total number of medals of the country in the past three years, the number of registered 
sports of the country, the number of registered sports of the country, the number of registered athletes 
of the country and the number of athletes of each level, and lastly whether or not the country is a 
competing country [5]. 

Secondly, after determining each data, we first predicted each prediction model individually and 
identified the model with the highest accuracy as the meta-model for our hybrid stacked model. 

Elastic Net Regression: 
We return to equation X mentioned above: 

minimize{ 1
2𝑛𝑛
∥ 𝑦𝑦 − 𝑋𝑋𝑋𝑋 ∥22+ 𝛼𝛼 ⋅ 𝜌𝜌 ∥ 𝑤𝑤 ∥1+ 𝛼𝛼⋅(1−𝜌𝜌)

2
∥ 𝑤𝑤 ∥22}                             (12) 

In order to accurately determine the regularisation strength α as well as the mixing parameter ρ, 
the Grid Search Cross-Validation (GSCV) technique is introduced in this study. This technique is a 
widely used method for hyperparameter optimisation to determine the optimal combination of 
hyperparameters by performing an exhaustive search on a predefined parameter grid and combining 
it with cross-validation to evaluate the model performance.  

We set the range of α to 0 to 0.2, and the range of A to 0 to 1. The step size of both is set to 0.01, 
under which an exhaustive search is performed and for each set of hyper-parameter combinations, 
cross-validation is used to evaluate the performance of the model, and then the optimal hyper-
parameter combinations are selected based on the average performance metrics of the cross-validation 
(e.g., accuracy, mean square error, etc.). Here we take the mean square error (MSE) as an example, 
which is calculated by the formula: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) = 1
𝑁𝑁𝑡𝑡
∑  𝑖𝑖∈𝐷𝐷𝑡𝑡 (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑡𝑡)2                                                 (13) 

Xgboost: 
Here we will not repeat the overall process of XGBoost directly see the final optimised objective 

function: 

ℒ (𝑡𝑡) = −1
2
∑  𝑇𝑇
𝑗𝑗=1

(∑  𝑖𝑖∈𝐼𝐼𝑗𝑗 𝑔𝑔𝑖𝑖)
2

∑  𝑖𝑖∈𝐼𝐼𝑗𝑗 ℎ𝑖𝑖+𝜆𝜆
+ 𝛾𝛾𝛾𝛾                                                (14) 

Using iterative optimisation after bringing in the prepared reference features using Matlab, we 
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similarly obtained their corresponding prediction maps (see later). 

2.2. Two-stage random forest algorithm 
Two-Staged Random Forest is an improved random forest algorithm, mainly used to solve the 

deficiencies of traditional random forest in feature selection and model optimization [6]. 
Phase I: 
In this phase, the raw features are first screened to remove redundant and unimportant features. 

This can be done by calculating the importance of the features (e.g., Gini index gain, mean square 
error, etc.). Then, a set of decision trees are trained based on the filtered subset of features. The goal 
of this stage is to reduce the feature dimensions and improve the training efficiency and generalization 
ability of the model. 

We choose the Gini index gain to filter the features of the training set. For a feature A and division 
point s, the Gini index gain can be expressed as: 

Δ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐷𝐷) − ∑  𝑣𝑣∈{𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}
|𝐷𝐷𝑣𝑣|
|𝐷𝐷|

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐷𝐷𝑣𝑣)                                    (15) 

Where 𝐷𝐷 is the dataset of the current node, and 𝐷𝐷𝑣𝑣 is the sub-dataset after division according to 
the division point s of feature A.  

After filtering the features of the training set using this formula, we finally choose the number of 
national participating athletes, the number of sports involved, the number of sports, and the number 
of level 3 athletes as the features of the training set. 

Then we select the above features from the dataset of those countries that have won only one medal 
and let the Random Forest classifier learn the features of the data of such breakthrough countries that 
have achieved 0 medals and predict the output accordingly, with an output of 0 or 1. 0 means that the 
country will not win a medal in the 2028 Olympics and 1 means that the country will win a medal. 

Phase II: 
In Phase I we determined which countries would achieve a medal 0 breakthrough, and in Phase II 

we needed to further refine our prediction model. In order to predict the specific number of medals 
for the countries that will win medals, we are still using Random Forest as a regression model to 
predict the number of medals [7]. In this phase we chose to use the same features as in the first phase 
of the algorithm, but only for those countries that were predicted to win medals in the first phase. The 
output is the number of medals that each country will win. 

3. Results 
For the prediction results (Figure 2) of the remaining two models (CatBoost, LightGBM), they are 

not repeated here due to space issues (see later for visualisation images).  
After the comparison of the individual linear regressions (Figure 3), the Elastic Net Regression 

model with the better MSE and R2 was selected to be used as the meta model for the hybrid model. 
We put the predictions of other models except the meta-model into the meta-model Elastic Net 

Regression. Using the principle of stacking, we let the meta-model Elastic Net Regression learn the 
prediction results of other models and combine them reasonably, and finally we get the hybrid stacked 
model we need, which combines the advantages of all the models and avoids the disadvantages, so 
that the final results are more reasonable and more accurate.  

By comparing the individual experimental results in Figure 2, it can be found that the stacking 
model significantly improves the experimental accuracy. 
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Figure 2 Detailed results of the stack model. 

Since whether a country has a medal or not is a non-zero or one thing, it has only two cases and 
we need a binary classifier, so the two-stage random forest algorithm is the most appropriate 
algorithm to accomplish the prediction. Specific evaluation indicators of the stack model are in Figure 
3. 
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Figure 3 Specific evaluation indicators of the stack model. 

After the two-stage random forest prediction, the results can be obtained as shown in Figure 4(c), 
while Fig. 4 demonstrates the training process and SHAP correlation degree map. 

 
Figure 4 Two-random forest. 

Based on market odds experience, the following odds calculation formula can be obtained: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑝𝑝
1−𝑝𝑝                                                               (16) 

Thus the relevant results can be obtained as shown in Table 1. 
Table 1 Odds by Country Code. 

 Country 
LUX ROC SEN 

Odds 1.25 2.46 2.76 

4. Conclusions and Future Work 
This study develops a comprehensive and data-driven framework for predicting Olympic medal 

distributions, with a particular focus on the 2028 Los Angeles Olympic Games. By integrating linear 
regression models (Elastic Net Regression) and nonlinear ensemble learning algorithms (XGBoost, 
LightGBM, CatBoost) through a stacked modeling strategy, the proposed system achieves high 
accuracy and strong generalization ability [8]. The hybrid framework not only captures complex 
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patterns in historical Olympic data but also leverages domain-specific insights through techniques, 
and the synthetic control method for evaluating coaching influence [9]. 

The results indicate that medal outcomes are strongly influenced by factors such as athlete number, 
event participation scope, coaching expertise, and host-country advantages. Particularly, countries 
that strategically allocate coaching resources and prioritize high-yield events tend to gain a 
competitive edge. The two-stage random forest model further enhances the interpretability and 
accuracy in forecasting early medal distribution, while the sensitivity analysis confirms the robustness 
of key variables across different scenarios. 

Looking ahead, there remains significant potential to enhance the predictive power and 
applicability of the model. Incorporating real-time dynamic data such as athlete injuries or 
qualification updates could make predictions more responsive to external changes. Additionally, 
integrating temporal learning frameworks like recurrent neural networks or transformer-based models 
may better capture inter-Olympic trends. Expanding the framework to other multi-sport events, such 
as the Asian Games or Commonwealth Games, would help validate its generalization capability. 
Finally, combining algorithmic modeling with expert feedback from coaches or national committees 
could open new avenues for decision-making support in elite sports management [10]. 

Overall, this work not only provides a practical medal forecasting tool but also contributes to a 
deeper understanding of the multifactorial dynamics behind Olympic success, offering valuable 
implications for national sports strategy and Olympic planning. 
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